recognized, explored experimentally, and utilized in the experimental design before a satisfactory result could be obtained.

To a solution of the methyl ester of (S)-5-HPETE [prepared by reaction of (S)-5-HPETE with diazomethane] in 1:1 methylene chloride-ether (75 mg/mL) and 1,2,2,6,6-pentamethylpiperidine⁷ (6 equiv), maintained at -110 °C by means of a liquid nitrogen-ethanol bath, was added 2 equiv of trifluoromethanesulfonic anhydride. After 40 min a large volume of pentane containing 1% triethylamine was added and the crude product was isolated by washing with water, drying with sodium sulfate, and removal of solvent in vacuo. The crude product which consisted of a mixture of the desired methyl ester of 3 and the conjugated dienone 4 could not be separated chromatographically and so it was treated with an excess of sodium borohydride in dimethoxyethane at 0 °C to reduce 4 to the corresponding hydroxy ester. Chromatography of the resulting mixture (preparative layer plate of silica gel impregnated with triethylamine using 1:4 ether-pentane containing 1% triethylamine for elution) afforded pure 3 methyl ester, R_f 0.45 (yield ~25%), chromatographically and spectroscopically identical⁹ with pure leukotriene A methyl ester prepared by the previously described⁴ synthetic route.⁹

Treatment of 3 methyl ester in methanol containing triethylamine with excess glutathione at 23 °C for 5 h, removal of methanol, and isolation as previously described⁴ gave the monoester of LTC-1 (5) in essentially homogeneous form as determined by reverse-phase high-performance liquid chromatography (Waters Associates C-18 µ-Porasil column using 65% methanol, 35% water containing 0.1% acetic acid buffered to pH 5.6 with ammonium hydroxide). Cochromatography of this product with methyl ester 5 prepared as previously described⁴ resulted in one peak, and identity was also indicated by ultraviolet absorption (maximum in CH₃OH at 280 nm (ϵ 40 000) with shoulders at 270 and 290 nm).⁴ Finally hydrolysis of 5 as described previously⁴ led cleanly to 1, identical with authentic LTC-1 by ultraviolet and chromatographic measurements and by bioassay.5e.10

The experimental work outlined herein demonstrates a short (five step) and simple route to the primary SRS LTC-1 (1) and also the related LTD. It represents a convenient method for the synthesis of small amounts of these SRS's as well as a chemical mimic of the proposed biosynthetic pathway. It is noteworthy, but hardly surprising, that the chemical conversion of 5-HPETE methyl ester into leukotriene A methyl ester is stereospecific and that the newly generated double bonds and oxirane ring are formed in the more stable trans arrangement.11

References and Notes

- (1) Austen, K. F. J. Immunol. 1978, 121, 793

- Austeri, R. F. J., Internation, 1979, 121, 1955. Parker, C. W. J. Allergy Clin. Immunol. 1979, 63, 1. Orange, R. P.; Austen, K. F. Adv. Immunol. 1969, 10, 105. Corey, E. J.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.; Samuelsson, B.; Hammarström, S. J. Am. Chem. Soc. 1980, 102, 1436
- Farminastron, S. J. Am. Orient. Soc. 1960, 102, 1950.
 For other recent papers dealing with the determination of structure of leukotrienes see: (a) Murphy, R. C.; Hammarström, S.; Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 4275. (b) Hammarström, S.; Murphy, R. C.; Samuelsson, B.; Clark, D. A.; Mioskowski, C.; Corey, E. J. Biochem. Biophys. Res. Commun. 1979, 91, 1266. (c) Corey, E. J.; Arai, Y.; Mios-kowski, C. J. Am. Chem. Soc. 1979, 101, 6748. (d) Borgeat, P.; Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 2148. (e) Hammarström, S.; Samuelsson, B.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.; Corey, E. J. Biochem. Biophys. Res. Commun. 1980, 92, 946. (f) Rådmark, O.; Malsten, C.; Samuelsson, B.; Clark, D. A.; Goto, G.; Marfat, A.; Corey, E. J. *Ibid.* 1980, *92*, 954.
- Corey, E. J.; Albright, J. O.; Barton, A. E.; Hashimoto, S. J. Am. Chem. Soc.
 1980, *102*, 1435.
 Sommer, H. Z.; Lipp, H. I.; Jackson, L. L. J. Org. Chem. **1971**, *36*, 824. (6)
- (8) Found for synthetic 3 methyl ester: UV max (CH₃OH) 278 nm (ε 40 000) with shoulders at 269 and 289 nm; mass spectrum (m/e) 332 (M^+), 300 (M^- OCH₃), 279, 203, 189, 149, 129, 101, 91; ¹H NMR (in C₆D₆, δ) 1.13 (t, J = 7 Hz, 3 H, -CH₂CH₃), 1.40-1.70 (br, 12 H, CH₂), 2.34 (m, 2 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CHHC(O)CH), 3.20 (m, 3 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CH₂-CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CH₂-CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CH₂-CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CH₂-CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 2 H, CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CH₂-CH₂-COO), 2.75 (t × d, J = 7, 2 Hz, 1 H, =CH₂-CH₂-COO), 2. C=CCH₂C=C, HC(O)C); 3.60 (s, 3 H, COOCH₃), 5.5–5.75 (m, 4 H, olefinic at C(7), C(12), C(14), C(15)), 6.15 –7.0 (m, 4 H, olefinic at C(8)–C(11)).
- (9) The dienone 4 was also isolated from the reaction mixture by chromatog

raphy on untreated silica gel. The product so obtained was identical with conjugated dienone 4 prepared by oxidation of 5-HETE using manganese dioxide in methylene chloride at 23 °C. Found for 4: IR max (CCl₄) 1580, 1680, 1735 cm⁻¹; UV max (CH₃OH) 276 nm; mass spectrum (*m*/e) 332; (M⁺), 301, 231, 129, 101, 79; partial ¹H NMR (ln CDCl₃, δ) 1.80 (m, 2 H, C(16) H₂), 2.33 (q, 2 H, *J* = 6 Hz, CH₂COOCH₃), 2.58 (q, 2 H, COCH₂), 2.80 (m, 2 H, C(13) H₂), 3.05 (m, 2 H, C(10) H₂), 3.67 (s, 3 H, COOCH₃), 5.40 (m, 4 H, olefinic at C(11), C(12), C(14), C(15)), 5.9 –6.25 (m, 3 H, olefinic at C(6), C(8), C(9)), 7.50 (q, *J* = 16.9 Hz, 1 H, olefinic at C(7)).

- We are indebted to Professor Bengt Samuelsson and associates of the Karolinska Institutet, Stockholm, for the biological comparison
- (11)We are grateful to Dr. Shun-ichi Hashimoto for providing (±)-5-HPETE. This study was assisted financially by the National Science Foundation and the National Institutes of Health.

E. J. Corey,* Alan E. Barton, David A. Clark Department of Chemistry, Harvard University Cambridge, Massachusetts 02138 Received January 28, 1980

Electronic Structure of 2-Fe Ferredoxin Models by $X\alpha$ Valence Bond Theory

Sir:

We report here calculations of $Fe_2S_2(SH)_4^{2-,3-}$, models for the active sites of oxidized and reduced 2-Fe ferredoxin proteins, by the recently developed $X\alpha$ valence bond ($X\alpha$ -VB) theory.¹ We believe that these calculations provide the first accurate theoretical description of the much-studied²⁻⁴ antiferromagnetic coupling between the two iron centers. By including the physically most important aspects of electron correlation in our theoretical model, we find much greater similarity between the 2-Fe and 1-Fe^{5.6} active sites than was evident from our previous $X\alpha$ molecular orbital (X α -MO) calculations on $Fe_2S_2(SH)_4^{2-3-.7}$

Figure 1 shows SCF-X α -SW-VB energy levels for

Figure 1. X α -SW-VB valence levels of Fe₂S₂(SH)₄²⁻. The orbitals are separated according to their localization on the left, center, or right of the molecule. Spin-up levels are depicted with solid lines, spin-down levels with dashed lines. The ten pairs of Fe 3d-like orbitals are indicated.

© 1980 American Chemical Society

Figure 2. Contour maps of wave functions for the $7a_1\uparrow$ and $9a_1\uparrow$ orbitals of $Fe_2S_2(SH)_4^{2-}$ in the planes both perpendicular to and containing the bridging sulfur atoms. The $7a_1\downarrow$ and $9a_1\downarrow$ orbitals are the mirror images across the Fe-Fe axis of those shown here. The left side of this figure may be compared directly with Figure 2 in ref 7. Contour values here and in Figure 3 are $0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5 = 0, \pm 0.050, \pm 0.075, \pm 0.100, \pm 0.125, \pm 0.160$ (electrons/bohr³)^{1/2}, respectively.

 $Fe_2S_2(SH)_4^{2-}$ in the broken symmetry C_{2v} .⁸ The three columns in this spin-polarized diagram show the energies of orbitals localized primarily on the left side, in the center, and on the right side of the ion. A given spin-up orbital on the left is energetically degenerate with its spin-down mirror image on the right. This arrangement makes it easy to view the ion as two coupled *high-spin* monomers. The left monomer, e.g., is assigned all the orbitals in the left column, and a half share in both the spin-up and -down orbitals in the center column. It thus has a net up spin of $\frac{5}{2}$, since there are five empty spindown orbitals (above -0.2 hartree); similarly the right monomer has a net down spin of $\frac{5}{2}$.

Most orbitals can be grouped in spin-up/spin-down pairs having large overlap, each pair thus resembling a doubly occupied MO. Examples are $(1a_1\uparrow,2a_1\downarrow)$, a left-side S-H bond; $(3a_1\uparrow,3a_1\downarrow)$, a bridging-sulfur lone pair; and $(5b_1\uparrow,4b_1\downarrow)$, a right-side S lone pair. There are ten pairs for which spinup/spin-down overlap is poor. All have mainly Fe 3d character, and are labeled with d-orbital symbols in Figure 1. Here the natural pairs contain one orbital each from the left and right sides—e.g., $(2b_1\uparrow,2b_1\downarrow)$. We refer to these as the magnetic orbitals, since they contain the unpaired spins if one considers the monomers as isolated.

In contrast to our previous MO solution,⁷ the highest occupied orbitals are not mainly Fe 3d. The spin polarization allowed by the symmetry breaking drives the occupied 3d band below Fe-S and S lone-pair orbitals. The 2-Fe active site thus resembles two weakly coupled high-spin ($S = \frac{5}{2}$) 1-Fe protein active sites: our most important conclusion (subsequently supported by experiment⁹) from spin-polarized $X\alpha$ -SW-MO calculations on $Fe(SR)_4^-$ was that the five HOMOs (all spin up) are mainly sulfur, while the five LUMOs (all spin down) are mainly iron.⁵ The 2-Fe MO solution in this context is like an excited state formed from coupling two low-spin ($S = \frac{1}{2}$) 1-Fe sites: Fe-Fe σ , σ^* , δ_{\perp} , δ_{\perp}^* , and δ_{\parallel} orbitals are occupied, implying doubly occupied Fe $3d_{z^2}$ and $3d_{xy}$ and singly occupied $3d_{x^2-y^2}$ orbitals in the monomers. Moreover, the detailed $X\alpha$ -VB charge distribution shows that, of the five magnetic electrons per monomer, ca. four are Fe 3d and one is S 3p. This corresponds to an Fe¹¹-S. monomer ground state, closely resembling the major configuration found for $Fe(SH)_4^-$ by GVB-CI calculations.⁶

Figure 2 shows the spin-up components of the two VB pairs $(7a_1\uparrow,\downarrow \text{ and } 9a_1\uparrow,\downarrow)$ which most closely correlate with the MOs $(4a_g \text{ and } 6a_g, \text{ respectively})$ pictured in our previous paper.⁷ As in the MO solution, greater Fe-Fe *overlap* is found in the pair

Figure 3. Contour maps of the wave functions for the $(8a_1^{\uparrow}, 8a_1^{\downarrow}), 2b_1^{\uparrow}, and 6a_1^{\uparrow}$ orbitals of $Fe_2S_2(SH)_4^{2-}$. $8a_1$ is shown in the terminal-sulfur plane, while $2b_1$ and $6a_1$ are in the bridging-sulfur plane.

 $(7a_1)$ having both lower energy and less Fe character. Figure 3 shows some of the magnetic orbitals; the small intrapair overlaps are evident. In 8a₁, we see some of the sulfur-radical character which arises from Fe-S covalency in the magnetic orbitals. The $2b_1^{\uparrow}$ and $6a_1^{\uparrow}$ maps illustrate the dominant superexchange mechanism for the observed antiferromagnetism.

Our X α -VB calculations of Fe₂S₂(SH)₄³⁻ with both equivalent and distinct iron centers¹⁰ predict that the electron added upon reduction enters the $12a_1^{\dagger}$ orbital, as would be naively predicted using Figure 1. We label this orbital as $d_{y^2-z^2}$, since its iron character is ca. $-\frac{2}{3} d_z^2 - \frac{1}{3} d_x^2$. This composition is consistent with experimental spectroscopy of of the reduced protein.^{2a}

The detailed $X\alpha$ -VB theory for extracting energies of pure multiplets from the broken-symmetry SCF state, and for calculating Heisenberg coupling constants J, will be presented separately.¹² For $Fe_2S_2(SH)_4^{2-}$ we predict J = -265 cm⁻¹ vs. -183 and -149 cm⁻¹ determined experimentally for the oxidized protein^{2b} and synthetic model,³ respectively. For $Fe_2S_2(SH)_4^{3-}$ we obtain -76 and -82 cm⁻¹ for the equivalent- and distinct-center models, respectively. Experimental values for the reduced protein range from -70 to -110 cm^{-1.4} We consider this very good agreement with experiment for these extremely small energy differences.

A subsequent full paper will compare complete $X\alpha$ -SW-VB results for ground and excited states of 2-Fe models with those being obtained by others¹³ for 4-Fe/8-Fe protein active sites.

Acknowledgment. We thank the NSF and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support.

References and Notes

- (1) Noodleman, L.; Norman, J. G., Jr. J. Chem. Phys. 1979, 70, 4903.
- (2) (a) Sands, R. H.; Dunham, W. R. *Q. Rev. Biophys.* **1975**, *7*, 443. (b) Palmer, G.; Dunham, W. R.; Fee, J. A.; Sands, R. H.; Iizuka, T.; Yonetani, T. *Biochim.* Biophys. Acta 1971, 245, 201. Gillum, W. O.; Frankel, R. B.; Foner, S.; Holm, R. H. Inorg. Chem. 1976,
- (3) 15. 1095.
- (4) Blum, H.; Adar, F.; Salerno, J. C.; Leigh, J. S., Jr. Biochem. Biophys. Res. Commun. 1977, 77, 650.
- Norman, J. G., Jr.; Jackels, S. C. J. Am. Chem. Soc. 1975, 97, 3833.
- (6) Bair, R. A.; Goddard, W. A., Ill J. Am. Chem. Soc. 1978, 100, 5669.
 (7) Norman, J. G., Jr.; Kalbacher, B. J.; Jackels, S. C. J. Chem. Soc., Chem. Commun. 1978, 1027
- (8) Bond lengths, sphere radii, etc., were as for the MO calculations.⁷
 (9) Hoggins, J. T.; Steinfink, H. *Inorg. Chem.* **1976**, *15*, 1682, and references therein.
- (10) For the calculation with equivalent centers, Fe-S bonds 0.035 Å longer than in the oxidized model were used. For the calculation with distinct centers, one iron had Fe-S lengths the same as in the oxidized model, the other 0.07 Å longer. For structures of reduced models and proteins see ref 11 and Teo, B. K.; Shulman, R. G.; Brown, G. S.; Meixner, A. E. J. Am. Chem. Soc. 1979, 101, 5624.

- (11) (a) Lane, R. W.; Ibers, J. A.; Frankel, R. B.; Papaefthymiou, G. C.; Holm, R. H. J. Am. Chem. Soc. 1977, 99, 84. (b) Berg, J. M.; Hodgson, K. O.; Holm, R. H. Ibid. 1979, 101, 4586.
- (12) Noodleman, L. J. Chem. Phys., submitted for publication. Calculation of J within Xα-MO theory is discussed in Ginsberg, A. P. J. Am. Chem. Soc. 1980, 102, 111.
- (13) Case, D. A., personal communication.

(14) Fellow of the Alfred P. Sloan Foundation, 1978-1980.

Joe G. Norman, Jr.,*¹⁴ P. Barry Ryan, Louis Noodleman Department of Chemistry, University of Washington Seattle, Washington 98195 Received February 14, 1980

Synthesis of (\pm) -Antirhine from (\pm) -Norcamphor

Sir:

Antirhine (1),¹ the major alkaloid of Antirhea putaminosa, is an unique yohimbonoid variant with cis C/D ring juncture and only two congeners, hunterburnine α - and β -methochlorides² (10-hydroxyantirhine α - and β -methochloride), have been isolated so far. Although a structurally simple compound, 1 has not previously been synthesized, probably owing to difficulty in the stereocontrolled construction of the three chiral centers, the centers at C₃ and C₁₅ with the less stable anti relationship, and the center at C₂₀ bearing vinyl and hydroxymethyl moieties.³ We describe here the first stereoselective synthesis of (±)-antirhine (1), starting from (±)-norcamphor⁴ (2).

Ozonization of the bicyclic δ -lactone 4 [prepared stereoselectively from (±)-norcamphor (2) via 3 (75.4% overall yield)^{4c}] in methanol (-78 °C), followed by direct reduction with sodium borohydride in the same flask (-78 °C to room temperature) furnished the oily γ -lactone 6⁵ [79.9% yield; IR (neat) 3400, 1755 cm⁻¹; mass spectrum m/e 171 (M⁺ + 1) 153 (100%)] spontaneously through the δ -lactone 5. Oxidation of 6 with Jones reagent gave the keto lactone 7, mp 78-80 °C, in 79.8% yield: IR (Nujol) 1750, 1725 cm⁻¹; mass spectrum m/e168 (M⁺), 140 (100%). Regioselective thioketalization was achieved by treatment of the pyrrolidine enamine derived from keto lactone 7 with trimethylene dithiotosylate⁶ in the presence of triethylamine, affording the α -diketone monothioketal 8, mp 142-144 °C, in 51.8% yield: IR (Nujol) 1755, 1720 cm⁻¹; mass spectrum m/e 272 (M⁺), 272 (100%).

Base cleavage⁷ of 8 (KOH-t-BuOH, 60 °C, 1 h) and acid workup produced the carboxylic acid 9, amorphous foam, in quantitative yield: IR (Nujol) 3400-2400, 1758, 1710 cm⁻¹; NMR (CDCl₃) δ 3.94-4.55 (3 H, m), 10.36 (1 H, s, disappeared with D₂O); mass spectrum *m/e* 290 (M⁺), 119 (100%). Treatment of 9 with ethyl chloroformate in the presence of triethylamine⁸ (CH₂Cl₂, room temperature, 4 h) gave the crude mixed anhydride, which on condensation with tryptamine (CH₂Cl₂, room temperature) afforded the secondary amide **10**, amorphous foam, in 76.8% overall yield: IR (Nujol) 3250, 1752, 1640 cm⁻¹; NMR (CDCl₃) δ 3.57 (2 H, br t), 4.13 (3 H, m), 6.05–6.50 (1 H, br q, disappeared with D₂O), 6.96–7.90 (5 H, m), 8.88 (1 H, s, disappeared with D₂O); mass spectrum *m/e* 432 (M⁺), 143 (100%).

On hydrolysis of the dithiane group, by treatment of 10 with methyl iodide in aqueous acetonitrile at room temperature9,10 $(\sim 48 \text{ h})$, cyclization occurred to furnish the lactam 11, mp 214-217 °C, in 36.8% yield: IR (Nujol) 3140, 1759, 1608 cm⁻¹; NMR (CDCl₃ + CF₃CO₂H) δ 4.00-4.46 (2 H, m), 4.78-5.28 (2 H, m), 7.05-7.70 (4 H, m), 8.72 (1 H, br s); mass spectrum *m/e* 324 (M⁺), 184 (100%). Reduction (LiAlH₄, boiling THF, 3.5 h) of the lactam 11 gave the aminodiol 12 with the anti C₃-C₁₅ relationship, mp 215-218 °C, in 92.5% yield: IR (Nujol) 3170 cm⁻¹; NMR (CDCl₃) δ 3.40-3.98 (4 H, m), 4.15 (3 H, br s, 2 H, disappeared with D₂O), 6.90-7.60 (4 H, m), 9.02 (1 H, br s, disappeared with D₂O); mass spectrum m/e 314 (M⁺), 225 (100%). Support for the assignment of the stereochemistry at C_3 and \overline{C}_{15} was obtained from spectral examination. As expected, the IR spectrum did not exhibit Bohlmann bands, while the NMR spectrum exhibited the C₃ H as a multiplet centered at δ 4.15, both indicating the cis B/C configuration owing to the anti $C_3\mathchar`-\mbox{C}_{15}$ relationship.36,11,12

Treatment of the diol **12** with 1 molar equiv of *o*-nitrophenyl selenocyanate and tri-*n*-butylphosphine¹³ (THF, room temperature, 2 h) allowed selective selenylation at the desired position to give the monoselenide **13**, mp 175-177 °C, in 39.2% yield (64.3% yield based on recovered **12**): IR (CHCl₃) 3470, 3280, 1590, 1330 cm⁻¹; NMR (CDCl₃) δ 4.21 (1 H, br s), 6.95-7.70 (7 H, m), 8.27 (1 H, d, J = 7.6 Hz), 8.73 (1 H, br s, disappeared with D₂O); mass spectrum *m/e* 498 (M⁺), 225 (100%). The selenide **13**, upon oxidation with *m*-chloroperbenzoic acid (1.3 equiv, CH₂Cl₂, -20 °C to room temperature) afforded (±)-antirhine (**1**), mp 100-102 °C (lit.,¹ 112-114 °C), in 71.7% yield, which had R_f values and IR, NMR, and mass spectra identical with those of the natural product.¹⁴ Since chiral norcamphor has been obtained,¹⁵ the present method is potentially useful for a chiral synthesis of antirhine (**1**).

Acknowledgment. We thank the Ministry of Education, Japan, for supporting this work.

References and Notes

- (1) Johns, S. R.; Lamberton, J. A.; Occolowitz, J. L. Aust. J. Chem. 1967, 20, 1463.
- (2) Bartlett, M. F.; Korzun, B.; Sklar, R.; Smith, A. F.; Taylor, W. I. J. Org. Chem. 1963, 28, 1445.
- (3) For syntheses of (±)-dihydroantirhine, see: (a) Sawa, Y. K.; Matsumura, H. *Tetrahedron* **1969**, *25*, 5319. (b) Kimura, T.; Ban, Y. *Chem. Pharm. Bull.* **1969**, *17*, 296. (c) Wenkert, E.; Sprague, P. W.; Webb, R. L. J. Org. Chem. **1973**, *38*, 4305. (d) Chevolot, L.; Husson, H.-P.; Potier, P. *Tetrahedron* **1975**, *31*, 2491. (e) Ficini, J.; Guingant, A.; d'Angelo, J. J. Am. Chem. Soc. **1979**, *101*, 1318.
- (4) (±)-Norcamphor (2) has already been successfully used as a synthon for the preparation of some medicinally important arkaloids: (a) Takano, S.; Hatakeyama, S.; Ogasawara, K. Tetrahedron Lett. 1978, 2519. (b) Takano, S.; Takahashi, Y.; Hatakeyama, S.; Ogasawara, K. Heterocycles 1979, 12, 765. (c) Takano, S.; Takahashi, M.; Hatakeyama, S.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1979, 556.

© 1980 American Chemical Society